Radiative lifetime of localized excitons in transition-metal dichalcogenides
نویسندگان
چکیده
منابع مشابه
Chiral topological excitons in the monolayer transition metal dichalcogenides
We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of th...
متن کاملExciton radiative lifetimes in two-dimensional transition metal dichalcogenides.
Light emission in two-dimensional (2D) transition metal dichalcogenides (TMDs) changes significantly with the number of layers and stacking sequence. While the electronic structure and optical absorption are well understood in 2D-TMDs, much less is known about exciton dynamics and radiative recombination. Here, we show first-principles calculations of intrinsic exciton radiative lifetimes at lo...
متن کاملExcitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light-matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influenc...
متن کاملRadiative lifetime of excitons in carbon nanotubes.
We calculate the radiative lifetime and energy bandstructure of excitons in semiconducting carbon nanotubes within a tight-binding approach including the electron-hole correlations via the Bethe-Salpeter equation. In the limit of rapid interband thermalization, the radiative decay rate is maximized at intermediate temperatures and decreases at low temperature because the lowest-energy excitons ...
متن کاملRadiative and Non-Radiative Exciton Energy Transfer in Monolayers of Two-Dimensional Transition Metal Dichalcogenides
We present results on the rates of interlayer energy transfer between excitons in two-dimensional transition metal dichalcogenides (TMDs). We consider both radiative (mediated by real photons) and non-radiative (mediated by virtual photons) mechanisms of energy transfer using a unified Green’s function approach that takes into account modification of the exciton energy dispersions as a result o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2018
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.98.205430